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We find the asymptotic decrease of correlations (aA +y, aB) ,  y �9 Z" + t l Yl ~ oo, 
in the Ising model at high temperatures. For the case when monomials  an and 
a n both are odd, using the saddle-point method,  we find the asymptotics of  the 
correlations for any dimension v. For even monomials  aA, an  we formulate a 
general hypothesis about the form of the asymptotics and confirm it in two 
cases: (1) v =  1 and the vector y has an arbitrary direction, (2) y is directed 
along a fixed axis and arbitrary v. Here we use besides the saddle-point method,  
some arguments  from scattering theory. 
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1. I N T R O D U C T I O N  

The decrease of correlations 

( FA +:,(a), FB(a) ) = ( FA +y(a) FB(a) ) -- ( FA +y(O') ) (  FB(O') ) 

as l Y I ~  c~ (1.1) 

has been studied in a wide range of papers. 11''-'2~ Here a = { a ( x ) ,  
x e Z  ' '§ is a Markov  Gibbs field on the lattice Z v+l, A, B e Z  ~+' are 
finite subsets of the lattice, FA, FB are local functions of the field, 
F~(a) = FA(crlA) and similarly for the function Fn, A +y  is the shift of a set 
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A by a vector y ~ Z v § 1, and ( �9 ) is the average with respect to the distribu- 
tion of the field. Using the arguments of Sinai and Minlos, t~) in a previous 
paper ~-') we proposed a general method to find the asymptotics of the 
expression (1.1) when ]y[ ~ ~ .  This method can be applied to the Markov 
Gibbs field, and it is based on the detailed investigation of the leading 
branches of the spectrum of the transfer matrix, i.e., the stochastic oper- 
ator of the corresponding Markov chain. The theory is summarized in 
refs. 3-5. 

In this paper we improve the technical aspects of the method to study 
cases which were beyond the scope of our previous papers. One of the main 
improvements is the successful application of the method of scattering 
theory for the so-called Friedrichs modelJ 6"7) Here we apply the method 
for the two-dimensional lattice Ising model and also to the case of the 
v-dimensional Ising model with arbitrary v when y tends to oo along some 
fixed axis of the lattice Z "§ ~. This latter case was considered in our pre- 
vious paper, (2) and in this paper we show that our method can be applied 
to the case when the vector y tends to ov along a direction different from 
the directions of the coordinate axes, although we have to impose some 
restrictions on this direction for technical reasons. 

To proceed to the description of the method we need some facts con- 
cerning the spectral analysis of the transfer matrix for the Ising model. 
Below we briefly formulate these facts; one can find details and proofs in 
refs. 3 and 5. 

Note that for the two-dimensional Using model (v = 1) many of our 
statements can be deduced from the results of Onsager, (8) Kaufmann,  ~9~ 
Schultz et  al., 12~ and Evans and Lewis, ~27~ who found in fact the whole 
spectrum of the transfer matrix for this model. However, our method is 
more general because it allows us to study any dimensions for the more 
complex fields. 

Also we remark that most of the papers mentioned above are devoted 
to the study of the case when the vector y has the direction of some given 
coordinate axis of the lattice Z v§  i. The case of an arbitrary direction was 
considered in ref. 28 for IAI = IBI = 1 (the two-point correlation function). 

Polyakov c23) was the first to establish that the asymptotics of (1.1) as 
y - ~  ov along a given direction has anomalies in the behavior of the 
preexponential factor in the case when [A[ = [B] = 2  and for small dimen- 
sion v = 1, 2. In this paper we show that the anomalous behavior of the 
preexponential factor is valid for an arbitrary direction of the vector y in 
the dimension v = 1 (see Theorem 2). 

Due to space limitations, we postpone some details of the proofs, as 
well as application of the method to more complex models, a subsequent 
paper. 
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2. FORMULATION OF THE PROBLEM AND 
THE MEAN RESULTS 

We consider  the ( v +  1)-dimensional  ferromagnet ic  Ising model  
generated by the formal  Hami l ton ian  

H ( a )  = - } -"  a,.a.,,, 
I x - y l  = 1 

~ = { ~ x = + l ,  x e Z  v+~} 

For  small values of  the pa rame te r  fl (an inverse tempera ture)  there 
exists a limiting Gibbs  distr ibutions of  probabi l i t ies /zp  defined on the set 
g 2 = { - 1 ,  1} z '+ '  of  all configurat ions of  the field (for more  details, see 
ref. 10). Deno te  by ( G )  --- (G)~,p the average of a function G ( a )  defined on 
g? with respect to the d i s t r ibu t ion / lp .  Below we consider  functions of  the 
form 

0"-4 = E O'x 
.x'EA 

(monomia ls ) ,  where A c Z "+L is a finite set. 
In this paper  we investigate the asympto t ic  behavior  of  the correla-  

t ions 

(O'A +.v, O'S) as y --* oo (2.1) 

where y ~ Z "  + ~ is a vector  of  the lattice Z v + 1, and A + y is a shift of  A by 
the vector  y. We define now which sequences { y,,}, y ,  ~ or, we shall con- 
sider in this paper.  Let Yo = (3/o ~) ..... y~o "+ ~ ) ~  R "+~ be a normal ized vector  
such that  

i , +  1 

lyol = Y. I/o*~ I = 1 (2.2) 
k = l  

We assume tha t  

y(k) " --*)/o k), k = l  ..... v + l  as n--*oo (2.3) 
ly,,I 

with the velocity 

" )/ok) = o , n ~ ~ (2.4) 
ly,,I 



88 Minlos and Zhizhina 

where ly,,I = ~ k = l  ...... + i " ~1, I.v,, I. In this case we say that the sequence {y , , }  
tends to ~ along the direction of the vector Yo. For  example, the sequence 

y , ,=  ([y~l) n] ..... [y~oV+ l) n]) ,  n ~  

where [ .  ] is the integral part  of a number, meets the conditions (2.3), 
(2.4). 

We impose the following conditions on the "directing" vector Yo: 

I. The coordinate y~"+l~ is positive and the greatest one 

y~o~'+ 1) ~> lY~0k~l, k = l  ..... v (2.5) 

This assumption preserves the general of the reasoning. In what follows the 
direction of the vector e,, + ~ ~ Z ~ § ~ will be called the "time" direction. 

In addition we require the fulfillment of the following conditions: 

2. The following holds: 

[y~ok~l<A~, k =  1 ..... v (2.6) 

where A,, a constant defined below, such that A ,  < 1/v. The necessity of this 
condition will be explain below. 

3. We have 

y l V +  l~... i (in the context of Theorem I) 0 / ~  

( v + l )  1 Yo > _~ (in the context of Theorem 2) 

From (2.6)-(2.8) it followers that 

ly k' I 
lY '"+l~]  < 3 A ' ' b "  k = l  ..... v 

(2.7) 

(2.8) 

o r  

ly 'l 
lyg~+l, I 

<2Av,  k =  1 ..... v 

Hence the vector Y0 lies in a cone enclosing the "time" axis. 

R e m a r k s .  1. The conditions (2.7), (2.8) on the coordinate y~V+t~ 
are necessary for technical reasons. No doubt, the expressions for the 
asymptotics are true for any vector Yo, but the proof  in this case is con- 
nected with many technical difficulties. Note that these conditions are 
important only for large dimensions v. 
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2. Note that the symmetry of the model implies that the asymptotics 
of (2.1) does not depend on the sign of the space coordinates of the vector 
Y0, so we can suppose that all coordinates y~o k), k = 1 ..... v + 1, of the vector 
are positive. 

By virtue of the invariance of the field with respect to the involution 

a.,. ~ - a x ,  x e Z  "+' (2.9) 

the correlations (2.1) are equal to zero in the case when the cardinalities 
[AI, [B[ of the sets A and B have different parity. In addition, the 
asymptotics of (2.1) is distinguished according to the parity of the sets A 
and B. 

We formulate now the main results of this paper. 

T h e o r e m  1. Let IA[ and IBI both be odd. Then for any vector Yo 
satisfying the conditions (2.2) and (2.5)-(2.7) there exists a vector 
m = m, ,(yo)= {m(k~(yo), k =  1 ..... v +  1} ~ R  "+t such that 

(m,,(yo), Yo) > 0 

and for any sequence of the vectors y = { y,,} tending to infinity along the 
direction of the vector Yo the following asymptotics is true: 

C v  

ly,, I v/; 
e-("'"l."~ as n--*oe (2.10) 

Here Cv =- Cv(A, B, Yo) are constants independent of the {y,,}. 

R e m a r k .  In the case when 

min ly~k~[ ~0e> 0 
k = 1,..., v 

where 7 is an absolute constant, the coordinates of the vector mv(yo) have 
the following form 

m~'(yo) = sign y~o k'. In [y~)[ + O(p) ,  k = l  ..... v + l  

This result is consistent with the formula from ref. 28. 
In the case v = 1 we can write the representation of the vector ml(yo) 

for any Yo: 
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m~l ' I(Yo) = - I n {  [ u-'(1 - fl2)2 + 4 ] ,/2 _ u(l  + f12)} + In 2(1 - flu) + O(fl) 
m~2~(Yo) = - l n  fl(l - ufl) -In{ [ u-'(l - fl2)2 + 4]  ,/2 _ u((1 + f12)} 

+ In{ [ u2( 1 - fl2)2 + 4] ,/2 ( 1 + f12) _ u( 1 - 2fl 2) - 4fl} + O(fl) 

where u =fl-I(y[ol)/y~)21). 
In the case when IAI and ]B] both  are even we suppose  that  the 

following general s ta tement  holds true, but  we can prove  this assumpt ion  
only in some special cases (see below, Theo rem 2). 

C o n j e c t u r e .  Let IAI, IBI both  be even. Then under  the condi t ions 
of  Theorem 1 and the condi t ion (2.8) we have the following asympto t ic  
formulas  as n ~ oo: 

((L4+,,,,,aB)=,B~),,e-2""'~."~ for v = l  (2.11) 
�9 lY,, I- 

B,  

< GA +,,,, ~ B > .  I.V,, 1-0 ( l n  { y .  - 
- [),e-'-(""-(.)'~ for v = 2  (2.12) 

O,, e-2(,,,,, ,.o..,.,,)( (aA +,,,,, ors) = ~  1 + o ( 1 ) )  for v>~3 (2.13) 

Here m,,(yo) is the same vector  as in T h e o r e m  1, B,,= B,,(A, B, Yo) and 
v =  1, 2 .... are absolute  constants.  

T h e o r e m  2. The  conjecture is true in the following cases: 

1. v = l .  

2. Yo = e,. + ~ for a rb i t ra ry  v. 

R e m a r k s .  1. The p roo f  of  the second s ta tement  of  Theo rem 2 is 
given in ref. 2. Here  we present a briefer p roo f  of  this result. 

2. The  first s ta tement  of  T h e o r e m  2 can be deduced from the results 
of  refs. 8, 9, and 20, where the spect rum of  the transfer matr ix  in the Ising 
model  for v =  l was found. Using this result and Theo rem 1, one can 
obtain  after s t ra ightforward reasoning the asympto t ic  formula  (2.11). 
However ,  in this paper  we use ano ther  me thod  which can be adap ted  to 
the investigation of  the general case. 

3. PROOF OF THEOREM 1. 
PRELIMINARY CONSTRUCTIONS AND FACTS 

N o w  we list facts required for the p roo f  of  the theorems.  M a n y  of  
them are well known (we shall point  out  the cor responding  references); the 
proofs  of  new results are given in Appendices A-E.  
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Since the random Gibbs field for the Ising model is the Markov one, 
we can represent it as a Markov chain considering the axis of the vector 
ev+l as the time direction, 

a ,={a lx . , , . geZ"  }, t . . . . .  - 1 , 0 , 1 , 2  .... 

A space of states of the Markov chain f2 o = { - 1, 1 } z,. is the set of all con- 
figurations of the field on the zero-slice 

Yo = { x  = ( x  11} ..... x (v}, 0)}  

The stochastic semigroup of the operators T ' ( t = 0 ,  1,...) for the Markov 
chain is determined in the usual way, and it acts in the Hilbert space H of 
the functions defined on the set s with the scalar product 

m 

( f l ,  f2)n = <fl  "f2> 

The generator of the semigroup is designated by the transfer matrix T of 
the field. Since the field is invariant with respect to "the inversion of the 
time," the operator T is self-adjoint, and 

<f l (a , )  f2(ao)> = ( T'fl, f2)u 

where f l ,  f2 e H, and a, is the value of the field at the moment t. We can 
also introduce in H the unitary group { U,., x E Z"} of the "spatial shifts" 
acting in H as follows: 

(U,.f)(a) =f(a  - x) 

w h e r e f e  H, a E g?o, and a -  x is a shift of the configuration a by the vector 
( - x )  s Y0. The operator T commutes with the unitary group { U.,.}. 

We shall need the following spectral properties of the operator T (one 
call find the proofs in refs. 10-13 and 5). 

1. For  small enough fl(0 < fl < flo) the space H is decompose into the 
direct sum 

H= Ho • H1 (~ H2 0 H 3  ~ H4 (3.1) 

of mutually orthogonal subspaces Ho . . . . .  H 4 invariant with respect to the 
operators T and U,.. Here Ho = {const} is a space of constants, H,  is a so- 
called one-particle subspace, and H_, is a two-particle subspace. Note that 
the sum 

H ~ = Hi G H 3  



92 Minlos and Zhizhina 

contains all functions which are odd with respect to the involution (2.9), 
and the sum 

H . . . .  = Ho ~ H2 ~ H4 

contains all such even functions. Let 

{i) T i = T I H :  U,. = U,.II~: i =  1, 2, 3,4 

be the restrictions of the operators T and U,. on the subspaces Hi, respec- 
tively. Then we have the following estimates for the operators T 3 and T4: 

II T3 II < C/~ 3, II T4 II ~ Eft 4 ( 3.2 ) 

where C is an absolute constant. Let us describe first the operators TI and 
UI, II in .. detail. 

2. The operators T1 and U!,. 1~. There exists a unitary mapping 

V I" H i -*L2(T",d)~) 

of the space H I into the Hilbert space L_,(T", d2) of the functions defined 
on the v-dimensional torus T" (d2 is a normalized Haar measure on T") 

transforming the operators T 1 and U~,: ~ onto operators 7"1 and U!~ 1~, respec- 
tively: 

7"t./'(2) = a().) f (2) ,  f e L 2 ( T " ,  d2) 
(3.3) 

UIx I ).f( A ) = ell ,,'. :.) f(,~ ) 

where 2 = (2 ~11 ..... 2"1), (x, 2) = Z -X'Ckl21kl" Here a(2) = a(2, fl) is a function 
analytic on T" which has an analytic extension to a complex manifold W/j, 
where W# is a factor-manifold obtained from a complex region 

Wa= { 2 = ( 2  '1' ..... 2 ' " l ) eC" , l Im2 'k ' l<<,G~,k=l  ..... v} (3.4) 

as a result of the identification of the points by the group of shifts 

2 ~ 2 + 2 n k ,  k e Z " ,  2 e W a  

Here G,, = Iln f l l - I n  D,., and D,, is an absolute constant such that D,, > v. 
Note that the manifold W/~ has the natural complex structure inherited 
from the structure of I,T'/j. In this case for every point 2 e W a we denote a 
projection of 2 on T" by Re 2 and a projection of 2 on the "imaginary 
cube" ( -G, , ,  G,,)" by Im 2. 
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L e m m a  3.1 .  The function a(2, fl) has the following representation: 

a()., fl)= flao()., fl) + fl2ad).,  fl) (3.5) 

The functions a0(L fl), al()., fl) are real and even as ) .e  T", they have 
an analytic extension in the domain  W a, and the function a~().,fl) is 
uniformly hounded  inside Wp together  with all its derivatives: 

IO~ad)., fl)l ~< C~ 

where C~ are absolute constants,  

~1~1 
D a _ (a ) . , )~ ,  . . .  (a ) . , )  ~,, 

and ~ = (~l ,..-, ~ )  is an integer-valued multi-index. The function ao()., fit in 
Wp can be written in the form of the series 

ao().,  fl) = ~ fll,,I I n [ !  e i t , , ,  ;. ) (3.6)  
, , ~ l - ,  ......... i ~ z ;  FI I n ,  It 

where Inl -- Z k = ,  ....... Ink I, ) .-- ( ) . " '  ..... ) . " )  �9 Wa. 

Proof. See Appendix A. 

R e m a r k .  In the case v = l  Schultz et al. ~2~ found the precise 
representat ion for the function a(2, fl): 

a( ) . , f l )=e2 f l~~  1/2} (3.77 

where Ap = ch 2ft. cth 2ft. Here we take the branch of  the square root  that  
has positive values as ). is real. F r o m  (3.7) we notice that  in the case v = 1 
the function a (L  fl) is analytic inside the region IIm ).1 < r, where r is a root  
of the equat ion 

1 
ch z = - -  + sh 2fl - 1 

sh 2fl 

F rom the formulas (3.5), (3 6) and the evenness of the function a()., fl) 
it follows that  the max imum of a()., fl) on the torus T" is at tained at the 
point  ). = 0, 

max a()., fl) = a(0, fl) 
) .~  T ~' 
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Thus the operator 7"~ has an absolutely continuous spectrum coinciding 
with the segment 

[min a(2, fl), max a(2, fl) =a(0 ,  fl)] 
) . ~ T  r ) . ~ T  ~' 

(3.8) 

and the norm of Tl has the order ft. Note that the length of the segment 
(3.8) has the order f12. 

L e m m a  3.2. 1. The function a()., fl) is not equal to 0 inside the 
domain W/s: a()., fl) ~ 0, 2 e Wis. 

2. The function a(2, fl) is real as 2 Re 2 = 0 ,  2 e  W/s (or at the points 
Re 2 = nk, where k = (k r ..... U"~), k "1 = 0, 1, i = 1 ..... v, by the identification 
of the torus T" with the cube [0, 2n]"), and the second differential of 
a(2, fl) is nondegenerate for all 2 e W,~ such that Re 2 = 0. 

3. In the case v = l  the second derivative of the function 
a(2, fl), 2 e  W/s, is not equal to zero at all critical points of the function 
atL/~). 

Proof. See Appendix B. 

L e m m a  3.3. Let A c Z "  be a finite set such that [A[ is odd. Then 
the function 

f~l~ ( 2 ) = (  VIPH, a A)(2 ) e L2(T", d2) (3.9) 

has an analytic extension to the region W/s. Here PH~ is a projector from 
Z L ' +  I 

L_,(( - 1, 1 ) - , IL), where It is the distribution of probabilities for the Ising 
field on Z "+~, on the space H~ c H c _ L 2 ( ( - 1 ,  1)z"+~,,u). 

Proof. The proof can be obtained from the reasoning of refs. 5 and 
10, and is based on the constructions of the subspace H~ and the mapping 
V,, as well as on the general estimates for Gibbs fields correlationsJ'6~ 

R e m a r k .  From the decomposition 

�9 ~" 2~eWp f ( 2 ) =  ~ c,,e 'l"" , 
n t E Z  L" 

which is true for every analytic function in W/s, it follows that the function 

f * ( 2 )  = ~" --e,, e-i'"" ~.~ 
t l E Z  I' 

is also analytic in Wa. This function is equal to f (2 )  when 2 is real, 2 e  T". 
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Below we shall describe the operators T 2 and U!,. -'1 in detail when we 
prove Theorem 2. 

Proof  o f  Theorem 1. Let A and B both be odd. Denote by A' c Z ~ 
and B' c Z 1 the projections of A and B, respectively, on the "time" axis 
e,,+l, and let a e A '  be the rightmost point of the set A', and b E B '  be the 
leftmost point of the set B'. We can suppose without loss of generality that 
b = 0. Then 

(aA+.,., a~)  = (T.'""+"+"U:.PHaA ....... ,, P na~)H  (3.10) 

when y~"+l~>a. Here y = ( f ,  y,,+l~), f=(),~l~ ..... yl"~)eZ", and PH is a 
projector on the space H. The formula (3.10) follows from the facts that 
the field is Markov, translation invariant, and invariant with respect to the 
inversion of the time. From (3.1), (3.2), and Lemma 2.2 it follows that the 
scalar product in (3.10) can be written as 

'""+t'+aUll~ Pt.l, an)+O((Cfl) 3y''+'') (3.11) (Tl . f  PthaA .... ',.+ i, 

It turns out that the asymptotics of the first term in (3.11) leads to the for- 
mula (2.10); therefore the second term in (3.11) is not essential for the 
asymptotics provided that the inequality (2.7) is realized. Using the spectral 
representation (3.3), we have for the first term in (3.11) 

(T.~I"+"+aUIe 1~ P~ha.4 ...... +,, PI-I, aB) 

(a(2 ~'v''*''+aoily'a)t~ll) ()~) ,]"IBI )( 2 ) d2 

f T~. exp{ y ' " + "  ../~(2)} g(2) d2 (3.12) 

where the functions f l l _  .,. f ~  .41 . . . .  ,(2) and ~(2) are defined by the formula 
(3.9), 

g(2)-- ll~ --fA -,,,.,.+,(2 ) " f~  '(2)-(a(2))" 

and for any ~-(~.~'~ ..... ~ I" ' )~R"  

fr = In a(2) + i(~, 2) 

It should be assumed that 

Y 
= ~(3') =ylV+ 1) (3.13) 
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in formula (3.12). Since f~l )()~), f ~  ~(2) are functions analytic in Wp, we can 
find the asymptotics of the integral (3.12) by the use of the saddle-point 
method.(~7~ 

L e m m a  3.4. For small f l (0<f l<f lo )  and for any ~ =  
(~(i) ..... ~t"))e R", such that 

~(k'>~0, ( 1 +  Z [~(~"I)>D~-I~'*'I, k = l , 2  ..... v (3.14) 

where D,, is the same constant sac in the definition (3 4), there exists a 
unique critical point 20 = 2o(~) of the function 

fr = in a(2) + i ~ 3.~-/)r I j) 
j = l , . . . ,  v 

with pure imaginary coordinates lying in the region Wa. This point is non- 
degenerate and it is a saddle point for the integral 

f r, .g(2) e 's~()') d2 (3.15) 

The point 2o(~) has a differentiable dependence on parameters ~ =  

Proof.  The proof is given in Appendix C. 

Remark. Now the condition (2.6) follows from (3.14), (3.13), (2.2), 
and (2.3), where the constant Av should be equal to Av = l/D,,. 

Recall that the critical point 20 is a saddle point of the integral (3.15) 
if there exists a surface F inside Wp (or a contour y in the case v = 1) 
passing through the point 20 such that the following conditions hold: 

1. We have 

frg( 2) e 'r~z d2 = f r , .g (2)  e ~rr d2 

2. We have 

max Re fr = Re fr 
2 E F  

3. In a neighborhood of the point 20 the surface F passes along the 
level surface Imf r  [or the surface of steepest, descent of the 
function Re fr for more details see ref. 17]. 
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Now we deduce the asymptot ics  of  the integral (3.19) using L e m m a  
3.4. Let y,, ~ ~ be a sequence of  vectors  tending to infinity a long the direc- 
tion Yo, and let ~,, be a vector  with coordinates  

r = Y' , : '  ,, y~,,,+~, s =  1,..., v 

and ~(oo) be a vector  with coordinates  

y~V+ 1 I '  

Note  that  the relation 

s =  1,..., 1, 

fr162 ) (3.16) 

as n ~ ~ ,  follows f rom L e m m a  3.4 and the condit ion (2.4). Thus,  put t ing 
2o=2o( r  we can use L e m m a  3.4 for the integral (3.12). Go ing  over  
the surface F (or  con tour  7) constructed in L e m m a  3.4, we can apply  the 
Laplace me thod  to the integral (3.12) over  F, and taking into account  
(3.16), we obta in  the asymptot ics  (2.10), where 

mc'~(y o) = - i2~;" ' (~(~)) ,  s =  1 ..... v 

ml,. + 1,(Yo) = --ln a(2o(~( oo ))) 

Theorem 1 is proved.  

4. PROOF OF T H E O R E M  2 

Since for even [A[ the project ion of  the monomia l  cr~ 
Za'+l 

L_,( ( -  1, 1) ~ , lt) on the space H~ equals zero, and Pl_~,_cr A # O, to find the 
asymptot ics  (2.1) we have to s tudy the characterist ics of  the opera tors  T 2 
and U!,. -'~ act ing in the space H 2. 

Characteristics o f  the Operators T2 and U~.,? ~ . There exists a uni tary  
m app ing  

V2: H2 ~ s ( T " x  T", d21 d2,)  c L ~  ym (TVx T ~', d21 d22) 

r-"-" 
t ransforming the opera tors  T 2 and U!, 3~ into the opera tors  ~'2 and U!,3~: 

822/84/I-2-7 
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T2.I')121,2=) = a(21) a(2,) J'()-i, )'2) 

+ [ S(2j, 22,ltl,lt 2) (5(21 -t-22-lt I --Its) 
�9 T v x T v 

x f ( . . , ,  tl_~) d/l~ dl-_ 

(UI,?'J')(2 " "  ~.,.;.,+<,,c1~ 2,), ,A2l=e , / ~ " ~  1 * _ 

where (21,2~_)~T"x T", j ' (21,2~)Es ym, 

(4.1) 

(4.2) 

I~syrn c L ~m ( T,, x T", 
2 

x ~Z"  

and 
d21 d22) is the space of symmetric functions .f(2 l, 22) orthogonal to func- 

_ sym ~ T", t i o n s o f t h e f o r m h ( 2  l + 2 , ) a L ,  (T x d2jd22): 

fr J'(21, )'2)h(2t +22) d21 d22 = 0  
v •  T v 

Here the function a(2) is the same one as in (3.3), and the kernel 
S(21,22,/1,,p2) is an analytic function with respect to each variable 
21,22, ill,/12 ~ ~V/I which is defined on the manifold 

l ' / ,= { (21 , )~2 ,p , , i t2 )e (W/ , )4 :2 ,+2~- - / l , - - / t2=O}  (4.3) 

In this case the kernel S(2t, 22, Ill, P2) has the form ~lSI 

S(21,2=, I l l ,  It2) 
= - a ( 2 1 )  a(2~) - a ( p , )  a(p~) 

+f, a(t,i)a(vz)dvldv=+K(21,22,Pl,p2) (4.4) 
' l  + t '2 = 21 - t -22=111  + I t 2  

where the function K(21,22,ll~,p2) analytic in (W/~) 4 is defined on the 
manifold (4.3) and satisfies the estimate 

IK(21,A2,pl,l12)l<Cfl 3, 21,22,/tj , / t2~T" 

In addition, the function K(2~, 22,pl,/t2) meets the following condi- 
tions: 

K(21,22,1tl,lt2)=K(itl,l12,21,22), 21,22,/tt,l12~T" 

f f  K(2t, 22, pl,llz)~(Itl +pz--A)  dpt dpz 
T '  x T ~' 

=~f K(21,22,/ll,lt~_)d(21+22--A)d21d22=O 
T v :< T v 

for every A ~ T". 
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From (4.1) it follows that we can represent the space H,  as the direct 
integral of the Hilbert spaces ~ 14) 

(. 
H2 = ~br,. H2(A) dA (4.5) 

such that the operators T_~ and U!,. -'~ have the analogous representation in 
the form of the direct integrals 

~. 7",( "---" ~ '--" 
7"~= A)dA, U!,.-" = U',.2'(A dA (4.6) 

- , ,  - . T V  - 

In so doing, the operator U~,.-'I(A). is divisible by the umt operator E(A) in 
H2( A ): 

UI.,. -' I( A ) =eil"" .i ~E( A ) (4.7) 

and the space H2(A) for every A e T" is unitary equivalent to the Hilbert 
space s (T" ,d2)cLJ(T" ,d2)  of the functions f(,~) on the torus T" 
orthogonal to the constants 

j'r,f(Y~) d2 = 0 

and invariant with respect to tile substitution 2 --* A -- 2, ,~ e TL Ill essence, 
the decompositions (4.5)-(4.7) and the transfer to the space s j (T", d2) 
signify the passage to the new coordinates on T"x  T" 

A =21 +22, ,~=21 (4.8) 

In this case the operator (4.2) will have the form (4.7), and the 
operator 7"2(A) in s  (T", d,~) is written as 

T2(A ) f(,~ ) = a.,(2) f(  ,~ ) + Iv,. S,  (.~, fi ) J(fi ) dfi, . fe  s j ( r" ,  d3,) (4.9) 

where 

a~,(,~) = a ( ~ ) .  a (A - i )  

S.~(2, fi) = S(2, A - ,~, fi, A - f i )  

(4.10) 

(4.11) 

As is evident from Lemma 3.1 or from the representation (3.7) for the 
function a(2), there exist exactly two critical points of the function a.,~(,~) 
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A A 

for every A ~ T ~: 2c,. = A/2 and 2'c~ = A/2 + rc i.e., for every fixed A = 2 ~ + 2 2 
_ cr  ~ c f  t the points 2cr--(2 ~, 2 ) = ( A / 2 ,  A/2)  and 2 ~ = ( A / 2 + r c ,  A /2+rc)  are 

critical. 
From formula (4.9) one can see that the operator 7"2(A) (belonging to 

the class of the Friedrichs operators ~7~ for every A ~ T" has an absolutely 
continuous spectrum coinciding with the range of the function aA(2), 

e T", and possibly a finite set of eigenvalues, 

g l ( A )  ..... e k ( A ) ,  k = k ( A )  (4.12) 

which are outside of the continuous spectrum/6"7~ In addition, it can be 
shown q ~s~ that there exists a neighborhood of zero O c T" such that the set 
of eigenvalues (4.12) is empty when A ~ O. If we denote by 

E = m a x  e , ( A  ) 
A. k 

then 

E < max aA().) = aA =o(0) = a2(0) (4.13) 
A, ). 

Finally, the case v=  1 the set of eigenvalues (4.12) is empty for every 
A t  TV. 18"9"2~ 

For every A E T ~ we denote the subspace of s on which the operator 
7"~(A) has only the absolutely continuous spectrum by s ,c _ s and the 
linear span of the eigenvectors of the operator 7"2(A) by-L2~ disc ~ s  
decomposition 

= L J . c  �9 

(for every A ~ T") generates the decomposition 

/_.~sym f s y m  t ' ~  s  
2 ~ ~ 2 .  ac  ~ 2, d i s c  (4.14) 

where 

 .yn, f .., ,.ym 2, ac = L,_. ac dA, = dA ~ 2 .  d i s c  _. d i sc  

Let ~ and T2,di~c be the parts of the operator T2 acting respectively, in 
the subspaces (4.14), and we introduce the analogous designation for the 

operator U!,2( 
From (4.13) it follows that the spectrum of the operator 7" 2 in the sub- 

space s is separated from the upper boundary of the spectrum of T, ~ 2 ,  d i sc  
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in the subspace fsym It follows from the general scattering theory for the ~ 2 .  ac " 

Friedrichs operators (6~ that for every A e T" there exists a unitary mapping 
(so-called "wave" operator) 

Q(A): s ac ~ s  I 

transforming the operator 'F2(A)[ s into the operator T~(A):  

(T~' (A) f ) (2)  = a ,(~.)f(~.), f ~  s 

Hence it follows that the operator 

f2= I (2(A)dA 
T i, 

realizes the unitary mapping 

~'~: [ % y m  .... f s y m  
~ 2 ,  ac ~ 2  

transforming the operator T, Ir~,,, into the operator 
- 2. ar 

T '~ 2,)=a(2~)a(22)f(21,2~),  f(21 22)e fsyn' 

and the operator U!,?~I -s~., into the operator (4.7). �9 L2. ac 

I . e m m a  4.1. Let A c Z "  be a finite set such that IAI is even; then 
the function 

fsym T", d2,} fA(21,22)=(V2PH,_tTA)(~I,22)e~2 (T"x  d21 _ 

where P/z_, is a projection on the space H, ,  has an analytic extension to the 
region Wp x W/s. 

Proof. The proof is analogous to the proof of Lemma 3.3. It can be 
obtained from the reasoning of refs. 5 and 10. The proof is based on the 
constructions of the subspace H 2 and the mapping V:, as well as on the 
general estimates for cumulants of the Ising field under small fl.t~6~ 

Proof of  Theorem 2. Using formula (3.10), we have that for even I AI 
and [BI 

T'""+"+"r;~'-I~ " Pll, aB) + O((Cfl) 4#'+") (4.15) ( O ' A + . v ,  O ' B )  = ( - - 2  ~")7 ' t H 2 U A  . . . . .  , ' + l '  . 

In what follows it will be shown that under condition (2.8) the main con- 
tribution to the asymptotics of (4.15) is given by the first term. 
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Let us consider the second part of Theorem 2:37 = 0 and v is arbitrary; 
then 

v(~'+ H + ct (T',_ PH,~rA . . . . . . . .  ~, Ptl,_ffB} 

f l  ~ I ' h ' + l l + a  " 
-~ (T2 JA ........ ,)(21,2,_)re(21,2~_) d21 d2,_ 

T v x T v 

f f  e------' y i v +  11 + (i a c  = (T,_.~- f A  ..... ..~,)(2~, 22) 
T~' • T t' 

x f ~  r (2t, 22) d21 d)~ 2 + O((E) ....... '~) 

fj " I'lv + ] ) -k- (! 
= (a(2t) a(2z)) gA .... .,.+,(21, 22) 

T x T  

x g--BB(21, 22) d).l d2,_ + O((E) '~'+") 

Here y'.~r lal (21 
and 

(4.I6) 

2,) is a projection of./.4.~n~(2~, 2_,) on the subspace fsym - ~ 2 ,  a c ,  

gA(21,22) = (12f.7)(21,22) (4.17) 

To find the asymptotics of (4.16) we have to apply the Laplace method to 
the integral in (4.16) (see, for example, ref. 17) and to do this we have to 
know the behavior of the function gA ........ ,(2~,2_,)~-~R(2~,22) in the 
neighborhood O E T"x  T" of the point 0 = (0, 0)e  T " x  T", where the maxi- 
mum of the function a(2j)a(2z) is attained. It turns out that in O the 
singularities of the function gA(2~, 2_,) are on the manifold {2t = 22}. Below 
in Lemma 4.2 we shall describe these singularities. 

Let us introduce local coordinates in O E T" x T": 

A =2 ,  +),_,, ~ = 2, -,~cr = 2 - , ~ r  (4.18) 

and let a.~(() and g.4(A, ~) be the functions a(2~, 22) and ga(2 t , 22) written 
in the coordinates (A, () in the neighborhood Oe  T " x  T". For every fixed, 
sufficiently small A the function a,d( )  as a function of ( has a unique criti- 
cal point ( =  0 in a small neighborhood of zero. Let A f(() be a quadratic 
form coinciding with the second differential of the function #,t(() at this 
critical point. Note that A d() is negative definite for all sufficiently small 
A; therefore AA(() is equal to zero only at the point ( = 0  (i.e., on the 
manifold {2, = 22} ). 

k e m m a  4.2. The function gA(A, ~) has the following representation 
when A and ~ are small enough: 
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. 

where 
c,_(A, O) = O. 

2. Fo r  v = 2  

For  v = 1 

gA(A, () = IAA(ff)I 1/z c~(A, r + c2(A, () (4.19) 

ck (A , ( ) , k= l ,2 ,  are analytic functions in O ~ T " •  ", and 

gA(A, ( )= 
el(A, ~) In IAA(~)I + c2(A, ~) 
bl(A, ~) In IAA(()I + b2(A, () 

where ck(A, (), bk(A, (), k = 1, 2, are analytic functions in O e T" x T", and 
c~(A, 0 ) = 0 .  

3. Fo r  odd v~>3 

gA(A, ~) = ]A,~(~)I I ' -  21/2 el(A, () + c2(A, () 

where ck(A, ~), k = 1, 2, are analytic functions in OE T~x  T". 

4. Fo r  even v> t4  

Cl( A, () IA A(r ~'-2'/'- In ]AA(r + c2(A, () 
gA(A, () = 

b,(A, C)IAA(C)I'"-2v2 In IAA(ff)I + bz(A, () 

where c~.(A, (), bk(A, (),  k = 1, 2, are analytic functions in O ~  T v x T". 

Proof. The p roo f  is given in Appendix  D. 

N o w  from L e m m a  4.2, using the Laplace me thod  for the integral in 
(4.16), we obta in  the formulas  (2.11 )-(2.13), where in the case Yo = e,,+ ~ we 
have exp[  - 2 ( m ~ ( y o ) ,  y,,)] = (a(0, 0)) I-'''1. 

We are coming  now to the first par t  of  the theorem,  when v = 1 and 
the first coord ina te  of  the vector  Yo is not  equal to zero: f o  1~ r 0. As dis- 
cussed above  [see (4.15) and (4.2)],  the asymptot ics  of  the correlat ions 
(aA +,,,,, cr~) amoun t s  to finding the asymptot ics  of  the integral 

f f  (a(21) a (22) )  exp[~vl,,ll(2, + 2 2 ) ]  
T •  

XgA--ae2(21,22) g-~(2t, 2,)  d2t d22 (4.20) 

as y,,=(f,,'~, ~121 ) ,, ) ~ m,  n ~ ~'J a long the vector  Yo = (y~t) y~o_,l). 
As for odd IAI and IBI, in this case we can use the saddle-point  

method.  Let us deform the con tour  T l x  T ~ to a con tour  F x F ,  where 
F= F(so) = (2 + iso, 2 e T l), and iso = 20 = 2o(~) is the critical point  of  the 
function in a(2) + i~2, ~ i11 I-'~ =Yo /Yo , discussed in the previous section. Let 
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R c Hip x Wp be a subset of the region Wp x W/j formed by all contours 
F(s) xF(x) such that - G l < s < G , ;  see (3.4). To use the saddle-point 
method we have to construct an extension of the functions gA.(B}(2,, 2,_) 
defined on T '  x T ~ (i.e., for s = 0 )  to the set R, so that the integral (4.20) 
is equal to the following integral 

I I  r (a()~ I ) a(fl.2)) "vc'~' exp[iyl, l~ (21 +22) ]  
(sO) x F(so)  

x gA_oe.,(21 , 2z)~-~(21 , 22) d),l d22 

=f fr  exp{y('~)(lna(2')+i~2' +lna(22)+i~)~'-)} 
(so) x lq~o)  

X gA-ae,_()~,, 22)~B()~' ' /~2)  d21 d22 (4.21) 

We can conveniently introduce in R the coordinates 

A = 21 + 22, 2 = Re 2, (4.22) 

which are a generalization of the coordinates (4.8) in T ~ • T '  c R, and let 
aA(2 ) be the function a(2,,  2,_) written in these coordinates. It is evident 
that A passes by the complex manifold 

W_p= {A: Re A ~ T ' ,  IIm AI <2G,}  

and 2 runs through the torus T' .  We recall that for every real A ~ T ~ there 

exist two critical points of the function a~(2)= a.~(,~): 2or = 2or(A)= 2c"~ ~ T ~ 
A 

and 2 ' ,=2 ' r  T ' ,  which are on the manifold {2, =22}, and the 
analogous critical points of the function aA(2) exist for every fixed A ~ W~p. 
If we denote small neighborhoods of these critical points by O, and 02, 
respectively, then let 

A=21  +22,  ~ = 2 -- 2or (4.23) 

be local coordinates in O, (and we have analogous ones in Oz). 

I . e m m a  4.3. For  any even IAt the function gA(2~, 2z)=gA(A, 2), 
defined by the formula (4.17) for 2,,  2_, E T ~ and written in the coordinates 
(4.22) has a continuous extension to the set R such that: 

1. The function gA(A, 2) is analytic with respect to A ~ W,_/~ for every 
fixed 2 ~ T 1. 

2. For every fixed A ~ W_,p the function gA(A, 2) is real-analytic with 
respect to 2E T' ,  except for the critical-points 2~r(A), and 2'~dA), and in 
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the neighborhoods O I and O~ of these points the function gA(A, 2) has the 
following representation [in the local coordinates (4.23)]: 

gA(A, ~)= 1~[ c11J'(A, ~)+c~1~(A, ~) in O, (4.24) 

and we have the same representation in 02. Here the functions 
c~! I (A, if), i, k = 1, 2, are analytic of A ~ W2/~ and real-analytic of ~ in a 
small neighborhood of the point ~ = 0. In addition, 

c~' (A, 0) = 0, i = 1 , 2  (4.25) 

Proof. The proof is given in Appendix E. 

Now the equality of the integrals (4.20) and (4.21) follows from 
Lemma 4.3. Further, as is seen from the reasoning of the previous section, 
the maximum of the real part of the function 

f(21,22,  ~) = In a(21) + i~21 + In a(22) + i~22 

on the contour ['(So) • F(so) is attained at the point 21 = 22 = iso = 20, and 
this contour is tangent to the level line of the imaginary part of the function 
f(21,22, ~). Hence the neighborhood of the point 

Po = (20, 20) ~ l"( So) x F( So) c R 

makes the main contribution to the asymptotics. Since the second differen- 
tial of the function f(2~, 22, ~) is nondegenerate at the point Po, we can 
apply standard practice to calculate the asymptotics of (4.21) using the 
Laplace method. Taking into account the character of the singularities of 
the functions g.4(A, ~) and g--~n(A, ~) at the point Po (afforded by Lemma 
4.3), we obtain the formula (2.11). 

Theorem 2 is proved. 

A P P E N D I X  A. PROOF OF L E M M A  3.1 

The proof is based on a construction of the space HI,  as well as on 
some sharp estimates used in this construction (given in refs. 5, 11, and 12), 
Here we recall the main steps of the construction of H t and some implica- 
tions of the sharp estimates which are necessary for the deduction of the 
representations (3.5) and (3.6). 

A1. The Mul t ip l ica t ive  Basis in H 

For every point x E Yo c Z" + 1 of the zero-slice Yo we denote the sub- 
set { y ~ Y o : y < x }  by V.,.= Yo, where y < x  in terms of the usual 



106 Minlos and Zhizhina 

lexicographic ordering on Yo ( = Z"). Let I~/~ be a distribution of the Ising 
field on the lattice Z "+ ~, and for every configuration ~ E{ - 1 ,  1} z,+, we 
define 

r.,.(o-) = r , . ( ~  I ~<,) = ( o r ( x )  I~l ,:<),,, 
where ( .  I~1,<,),,~ is a conditional average under the condition that the 
values of the configuration tr on the set V k. are fixed (and coincide with 

a i r , ) .  
Let us introduce functions 

r  - r . , . (a)  
�9 - , I, , ,  ~ H ,  x e Yo and u,.(~) (1 - r . ; ( ~ ) )  - 

u/(~)  = [ I  t,,.(~) 
.x'~ l 

for any finite subset I m Yo. It turns out that the set of the functions 
{u/, I m  Yo} forms an or thonormal  basis in the space H. In addition, the 
following expansion is valid: 

u. , . (o ')=o'(x)--fl  y. t x ( x - - e k ) + t ~ ,  
k = I, . . . ,  r 

where ek is a unit vector in Z" which has the direction of the kth  axis, and 
t~',. has the following representation: 

.7, = E 8 ;  
I c V,  ,.J l a ' l  

with coefficients B) .  From the sharp estimates of the coefficients B) given 
in ref. 5, it follows that for any .x', yE  Yo, x ~<).', 

+ O((Cfl) I-'- -'q + 2) (A.1) 

where I~.1 = ~ i =  i ....... I~'"1 for ~ = (~ l l  ..... ~l,,) ~ Z,. The analogous represen- 
tation is valid for x I> y. 

A2.  T h e  S p a c e  H 1 and  t h e  Basis  in H 1 

The invariant subspace H~ mentioned in Section 3 is constructed in 
ret: 5 as a small perturbation of the space H ~ c H, where H~ is the linear 
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span of the vectors { u . , . , x e  Yo}. In this case 
orthonormal basis of the form 

v,. = u., + ~ STu, 

107 

there exists in H~ an 

l c  YO,]I] />2  

where S~ are coefficients. From the estimates of these coefficients given in 
ref. 5, it follows that the matrix elements 

a.,._ , .= ( T I v.,., v,.)tt~ (A.2) 

of the operator T, = T] H~ in the basis { v,., x ~ Yo} can be represented as 

( T ,  v.,., v.,.) H~ = ( T ,  u,., u,. ) H, + O( ( Cfl )1., - .,'1 + -' ) ( A.  3 ) 

Further, for any y = (3'~'~ ..... Yr ~ Yo we have 

( a ( e , , + ] ) a ( y ) ) = f l  I.''t+' (lY[ + 1)! + O ( ( C f l )  I.''1+'- ) (A.4) 
l -L= ,  ....... ly"q!  

Formula (A.4) follows from the well-known formula for the average ( F ) m  , 
with respect to the distribution it/j: 

fl,, 
<F>,,~= ~ n~ Y" <F, ab, ..... a,,,,>o 

n = 0  (hi ,---, bn) 

where the summation is over all ordered sets (b, ..... b,,) of unoriented links 
of the lattice Z ''+), ab=a . , . . a , , ,  where b = ( x , y ) ,  and <., .... ' )o  is a 
cumulant calculated with respect to the distribution of probabilities of the 
nonperturbed field, with independent values distributed by the probabilities 

Pr(a(x) = 1 ) = Pr(a(x)  = - 1  ) = 1/2 

at every point x e Z  ''+', From (A.1)-(A.4) we have that 

a,,=fll,,l+, lul! +O((Cfl)l,,l+,_ ) (A.5) 
I-I ,=,  ....... lu'"l! 

where u = (u ~ ~,..., u~"~). 

A 3 .  T h e  M a p p i n g  V 1 

The unitary mapping V~: Hj  ~ L 2 ( T " ,  d2) is given by the formula 

VI ( vx ) =- eiO.. x) e L,_( T", d2) 
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In so doing, the operator T~ with the matrix elements (A.2) in the basis 
{v.,., x e Yo} is transformed into the operator of multiplication by the 
function 

~(2)= ~ a.el "" 
t /  ~ Z r 

Now the conclusion of the lemma follows from (A.5). 

A P P E N D I X  B. P R O O F  OF L E M M A  3.2 

1. In the case v=  1 the function a(2, i )  can be written as 

a(2, i ) = f l  1 q- 1 --fie i;+ 1 --fl---~-i--d'J +iza'(2'[3) 

l 
- (1 -- fle/)'}( 1 - - i  e-i;') +f12a2()~ l )  (B.1) 

where the functions ak(2, fl), k = 1, 2, are uniformly bounded inside the 
region Wis: 

lak( 2, t)] ~< Ck 

Then taking into account the inequality 

( [3 -i~.) >( i ,>0 
1 -field)(1 - f i e  1 + 1/D I )- 

where Dj is the constant defined in (3.4), we get that a(2, fl)r in WIi. 
In the case v = 2 we shall separate the region WI~ into four covering 

subregions: 

W,--- {lira ),k,[ ~< �89 I lni l  +0, k-- l, 2} 

W 2 = {[Im)," ' l  < �89 l int]  +d ,  Jim 2'2'1 ~> �89 ]lnill} 

W 3= {]Im)(2)/~< �89 Iln fl] +d ,  [Im 2 (')l ~> �89 

W4 --= {lIm 2k'l > �89 Iln i l ,  k = 1, 2} 

where d is a small constant. Note that by the evenness of the function 
ao(2, i )  [see (3.6)] it is sufficient to consider the case when Im2~k~>0, 
k = 1, 2. We denote 

W/~ = W/~n {Im 2'k' > 0, k =  1, 2} 
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If h E WI~ m W,,  then lao(h, fl)l >/( 1 - kl x/~) ,  kl > 0 is a constant,  and the 
function a(h, fl) has an analogous estimate. 

If h E W/-~ ~ W2, then 

: - -  i ) :  2 I 

ao(2, fl) = 1 -+ + b(2, fi) 
1 - fie - i:."-~ 

where Ib(h, fl)l ~< k2,,/~, when h e  W/~ c~ W~, k ,  is a constant.  Hence 

"e" I ( ' 
lao(h, f l ) l> 1 +  - k ,  V/-fi>~ k~ ~>/,', 

1 - f i e  -i;'''-~ - 1 + l I D  2 - " 

where k3>0 is a constant ,  and the function a(h, fl) has an analogous 
estimate in the region W/~- n W2. The case when h E W/~- c~ W 3 is con- 
sidered in a similar way. 

If h e Wt~ n W4, then 

ao(h, fl) 1 q- fl(e-i;"" +e-i;:-') = + ~ ( h ,  p) 
" 2  

1 - f l ( e - i ; " ' ~ +  e - ' " '  ') 

where f ( h ,  fl)l <~k4fl 3/2 when h e  WI-; n W4. Hence 

1 k4f13/2 ) >1 ks lao(L/~)l  >-- 1 + 2 / D ~ _  

where k4, k5 > 0 are constants, and the function a(2, fl) has an analogous 
estimate in this region. Thus,  a(2, fl) 4:0 inside the region W/j. The cases of 
the other  dimensions v ~> 3 can be considered along similar lines. 

2. Let 2---ix, x e R". F r o m  the Fourier-series expansion of the func- 
tion a(2, fl), 

a(2, fl) = z.,Vl'-,~e iu~. ;.~ , f i = ( n l  ..... n,,) 
t~ 

with real coefficients b, it follows that  the function a(2, fl) is real when 
2 = iv. To prove the nondegeneracy of the second differential of the func- 
tion a(2, fl) for pure imaginary 2 it is sufficient to prove this fact for the 
function ao(2, fi). The second differential of 

v exp{_  B2, 



110 Minlos and Zhizhina 

at the point  Xo = (x~o II ..... x~ '~) is equal  to 

nk d-x (k~ exp - nkx~o k) 

and it is a nonnegat ive  degenerate  quadrat ic  form, which is equal to zero 
on the plane 

nk dx (k) = 0 

But the intersection of  all these planes contains  the unique point  d x ~ J =  

. . . .  dx  I ~ =  0 when { nk} runs through the integral lattice, and every expo-  
nent (B.2) is a par t  of  the sum (3.6) with the positive coefficients 

Cl,,~l = / ? z  i,,k~ ( Z  In+l)! > o  
I-[ In+l! 

(recall that  we consider the ferromagnet ic  case when fl > 0). Consequent ly ,  
the total  quadrat ic  form corresponding to the second differential of  the 
function ao(2, fl) with pure  imaginary  20 = ixo is positive, 

)+{ ) _ v 

C{,,+] n k d.x "~k) exp - k  
{n~+} k= I -= 

for every nonzero  dx = (d.v ('~ ..... dx(") .  

3. The conclusion of  the l emma follows f rom the representat ion (B.1) 
and also (3.7) for the function a(2, fl). 

The  l emma is proved.  

APPENDIX C. PROOF OF L E M M A  3.4 

First we consider the case when v = 1, and let ~<~ = ~ > 0. We can find 
the critical points  of  the function fe(2)  as the solutions of  the equat ion 

d . a ' (2)  ~./+(~)=~+i~=o, ;+e w~ 

Taking  into account  the representat ion (B.1) of  the function a(2)  and using 
Rousher 's  theorem, we can prove the existence of  two critical points offe(2):  

~<+)/~  o,  + [  ~ 2 ( 1 - [ 3 2 ) 2 + 4 f 1 2 ] U 2 - 4 ( l + f 1 2 ) + 0 ( + _ ) ( ~ , f l  ) 
o- ,~-, PJ = - i  In 

2fl( 1 - ~) 

Im )Jo + ~ > 0, Im 2~- ) < 0, ]c( + I(~, fl)[ < Cfl, C is an absolute  constant .  
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If ~>~fl, then the critical points 2~+~(~,fl) will lie in the region 
]Im 2] i> �89 Iln fl[ + ~, where 6 > 0 is a constant, In particular, for ~ such that 

/> a > 0, a a is a constant, it is easy to see that the critical points have the 
following representation: 

2~o+ '(~, fl) = - i  (In fl + In (1 + ~)  + ~' +'(~, f l)) ,  Im 2 ~ + ' > 0  

2~o-'(~,fl)=g+i(lnfl+ln(~-l)+o~'-'(~,fl)), 0 < ~ < 1 ,  Im2~o- '<0  

where ]~ + ~(~, fl)[ < Cfl, C is an absolute constant. 
Since the critical points 25 + I (~, fl) must be inside the region Wtj, it is 

necessary that 

1 1 1 > D i  for 2Co-~ Wp I + ~ > D ,  for 2[o+'eW/~, ~-- 

where D~ is the constant from (3.4). But to use the saddle-point method 
only the critical point 2~ +1 (~, fit with pure imaginary coordinates will be 
important for us (as will be shown below), so we shall restrict our con- 
sideration to the first inequality, which leads to the following estimate on ~: 

1 ~< 
D I - 1  

To find the saddle-point contour, we have to consider the level line of the 
function Imf~(2) passing through the points 2~+l(~,fl) and 2~o-~(~,fl). 
A detailed analysis of the function Re./~(2) shown that the saddle-point 
contour goes through the point ).~o +1 parallel to the torus T. As for tile 
other critical point 2~o -~, the corresponding contour ought to have the 
vertical tangent at the point 2~ -~ . But for any such contour there always 
exists a point 2' :~ 2~o - ~ on this contour such that 

Re J~(2' ) > Re .1~(~I)-') 

Hence there does not exist a saddle-point contour passing through the 
point 2~ -~ . 

For arbitrary real r such that I~-[ >~a>0,  in the case v =  1 under the 
condition 

1 
1 4 1 < - -  Dl- -1  
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there exists the unique saddle point for the integral (3.15) inside the region 
Wit, which is equal to 

( ( ) 2 o ( ~ , p ) = - i s i g n ~ .  l n / ?+ ln  1+  +e (~ ,~ )  

where I~(~, ~)l < Cp, C is an absolute constant. 
,l• are For small 0 <~  < x/~ the corresponding critical points z o 

inside the region [Im21<~lln[tl+~', 6'>6, and only one of them, 
2~+~(~, fl), with pure imaginary coordinate is the saddle point for the 
integral (3.15 ). 

In the case v > 1 we can divide the region W/j into 2" subregions in the 
same way as in Appendix B. Then we can prove the existence of a unique 
critical point with pure imaginary coordinates in each of these subregions 
using the representations (3.5) and (3.6) for the function a(2, fl). In so 
doing, each of these subregions corresponds to some values of the 
parameters ~ = (~lJ ..... ~,,i) as we have explained above. If 

min I~'k'l >/0r > 0 
k = 1 . . . . .  v 

where ~ is an absolute constant, then similar to the case v = 1, under the 
conditions 

( 1 +  ~ ,d.c~~l)>D,.[~"[, k = l  ..... v 
s = l , . . . ,  v 

in W/s there exists a unique saddle point ),o(4, fl) for the integral (3.15) with 
pure imaginary coordinates 

/ 
2{~(r /3) = - i  sign ~,k,. kin/3 + In 

where 1~.(~, [3)1 < Ckfl. 

) l+Z"l~, 'L i Ir162 , k = l  ..... v 

Further, the saddle-point surface is constructed in much the same way 
as in the case v = 1" it must pass through the point 2o(~,/3) parallel to the 
torus TL The lemma is proved. 

A P P E N D I X  D 

Statements. 1. From the results of refs. 8, 9, and 20 it follows 
that in the case v= 1 for every A 6 T 

AA(z +iO)~O 

when - 6  {a ~(,~), ,~E T}, and the function a d,~) is defined by (4.10). 
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2. From Lemma 3.1, the representations (3.5)-(3.7), and the results 
of ref. 15, it follows that in the case v t> 2 for A e O(0) 

A A ( Z "-F i O ) =fi O 

when ze  {a~(2), 2e  T"}, and the function aa(2) is defined by (4�9149 

Proof of  Lomma 4.2. Using the explicit representation for the kernel 
of the wave operator 12(A, 2, fi),~6~ we can write the function ga(A, 2) in the 
notation of formulas (4.9)-(4�9 ) as 

where 

,~ ~ ac ga(A, 2) = fr; f2*(A, , I ) f a  (A, fi) dfi 

. ~ T~(fi, 2, a,,(2)+iO) 
= f"~( A, 2) - - 'T '  ~ ) - - ~ 2 7 - ~  f A~( A' /20 aft 

=f'ar 2) - lim I Ta(fi, 2, z) 
. . . . .  ,a,+;o T , ' ~ ) - - 7 - )  fT(A'p)dg~ (D.1) 

TA(fi, 2, z) DA(fi, 2, z) 
- , ze  CI\OA (D.2) 

A ,,(z) 

O j is the range of the function aA(2), ,~ e T ~, AA(z) is the Fredholm deter- 
minant, and DA(2, fi, z) is the Fredholm minor for the kernel SA(,~, fi); see 
(4.11) and (4.4)�9 

Let us consider the case v = 1. Recall that the Fredholm minor and 
determinant can be represented in the form of series: 

�9 f ..... 4~  d4,  (D .31  Z~ I (Z) :  1 "{" n=k' 1 fT" " d T I - I i ' ~ _ _ ~ 2 Z ' , = ,  

k ....... . 1 fT ' ' '  f D ~ " ~ f i ,  4,,..., e,, i7-[ d4; (D.4) 
n =  I i =  I 

where A[.;" (( ,  .... ~,,) = d e t  {SA(~,, 4)};  D]" (k ,& ~, ..... ~,,) are so-called 
nth Fredholm minors corresponding to the kernel SA(2, fi) (see, for 
example, ref. 19). It is easy to see from Hadamard's inequality that the 
functions A.,(z) and DA(2, fi, z) for fixed 5., f i e  T are analytic with respect 
to (z,A), when zr  In addition for every x e O A  except maybe the 
critical values of the function a,~(5.) there exist limits 

d ;~(x)=  lim aA(z), x e O A  
:~x+iO 

822/84/1-2-8 
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when z tends to the upper ( + ) or lower ( - ) extent of OA. By analogy, the 
function 

DA( fi, 2, z) . . . . .  I.,,(kZ)=fr~--__)J*ta,~)dl~ 
is analytic with respect to (z, A) as z r O,t, and it has limits, when z tends 
to the extremes of OA, 

I ~ ( ) . , x ) =  lim IA(2, Z), xuO . ,  
z ~ x + i O  

[except maybe the critical values of a4(~) ]. In this case the functions 
A + (x ) , I  +- (2, x) are analytic with respect to A and x e O A  [except the A A 

critical values of aA(,~)]. 
In the local coordinates (A, ~) [see (4.18)] in the neighborhood O of 

the point (0, 0) E T ~ x T ~ we have exactly a unique critical point 2o with 
coordinates 2o = (A, 0), and it is easy to show that the following represen- 
tations are valid: 

SA(0) 
A+(aA(~)) = --2rti IA A(~) ] ,/2 ( 1 + N ,(~)) 

SA(O) f~AC(A, O) 
I+(~, aa(~)) = --2~i ]AA(~)[I/2 (1 + PA(~)) 

where AA(r is the second differential of the function a.d~) at the critical 
point 2o=(A,  0), 

S.dO) = Sj , (O,  O) 

1 S ,, (~ . . . . . .  ~,,) 
,,=2 fl  ' <  

S7'(42 ..... 4.) = det{ S.,(4,. ~j)} 7j=~ Ir =o 

the functions NA(('), PA(r for any C E O(0) are analytic in A, and satisfy 
there the estimates 

INA(C)I < const. ICI,  IPA(C)I < const. ICI, C e O(0) 

In addition, a detailed analysis of the integrals from (D.3) and (D.4) shows 
that 

I5(r a~(O) _ r ~ c A  O)+R~(r 
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where the function R,t(() has the representation 

RA(~)=]A~ , (~ ) ] I /2c I (A ,~ )+c2(A , ( ) ,  ~E O(0) (D.5) 

c)(A, ~ ) , j =  1, 2, are functions analytic in O, and c2(A, O)=0.  
Finally using the expansion of the function f~l(() at the point ( =  0, 

from (D.1), (D.2), and (D.5) we get the representation (4.19). 
The cases v ~> 2 are considered in a similar way. Lemma 4.2 is proved. 

APPENDIX E. PROOF OF L E M M A  4.3 

Let us consider in the region 

R = {(2,,  22)~ W/~ x W/,: Im 2. = Im 22, IIm 2jl < G , , j =  1, 2} 

for any A = A + i2s, - • < 71 <~ 7r, - G~ < s < G~, the following manifold: 

F ,  = { (2, ,  22)~ R: 2, + 2_~ = A} 

FA c R, and let 2 = Re 2~ = Re ,~ be a coordinate of the point situated on 
F.~. A projection of any manifold Fj, on the cut { Im 21 = Im 22 = 0} c R 
has the shape shown in Fig. 1. 

As discussed above in the proof of Lemma 4.2, the function gA(A, 2) 
is analytic in A when A ~ T t is real (i.e., for s = 0 ) ,  real-analytic in 2~ T ~, 

\ 

Fig. I. 
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except the critical points 2r162 and for every A e T  t has the 
representation (4.19) in the neighborhood of the critical points 2c~ =A/2 
and 2'~ = A/2 + ~ of the function aA(2). 

Note that for complex A the values of the function a.~(2), 2 E T ~, fill 
out a smooth curve YA ~ C~ on the complex plane. Since the function a,t(2) 
has the same values at the points 2 and Re A -  2, the curve y,~ is covered 
twice under changes of 2 from - ~  to re, and the extreme points z ,(A) and 
z2(A) of ~'A correspond to the critical values of the function aA(2). From 
Lemma 3.1 or from the representation (3.7) it follows that for all 
A = Re A + i2s the function a,~(2) has exactly two nondegenerate critical 
points: 2~ and 2'~. 

We define now the function gA(A, 2) for complex A = R e  A +i2s, 
-zr < Re A -%< n, - G~ < s < G~, by the formula 

ga(A, 2 ) = f ~ ( A ,  2) - lira ~r T"(P '2 ' z )  f ~ ( A ' p ) d l t  (E.1) 
. . . . .  , ~ + ~ o  , ( a , , ( / l ) -  z )  

Here the limit z--* a.~(2)+ i0 should be read as the limit when z tends to 
the point a~(2)~ y,~ "on top," and the function TA( p, 2, z), p, 2 ~ T ~, is an 
analytic extension of the function (D.2) to the complex manifold Wz/~ with 
respect to the variable A. The existence of this extension follows from the 
representation (D.2), the formulas (D.3) and (D.4), and the fact that for 
every A = Re A + i2s, -G~ <s < G~, 

A,r(z + iO) =/=0 

when z~ {a~(2), 2~ T~}. In this case the function T I(p, 2, z) ,p,  2~ T ~, is 
analytic in A and z C L  t, and it has a limit when z ~ a ~ ( 2 ) + i O  [except 
maybe the critical values z~(A) and z2(A) of the function aA(),)]. 

Analogous to the proof of the Lemma 4.2, we obtain that the above 
function gA(A, )~) is analytic in A for every fixed 2r 2c,.(A), 2'r Thus for 
every fixed A we have to study the behavior of the function g.4(A, 2) in the 
small neighborhoods Ot and 02 of the points 2~r(A) and 2'r respec- 
tively. In the local coordinates (A, () of (4.23) we have two functions 

g ~ ' ( A , ( ) = g a ( A ,  2)lo,, i = 1 , 2  

defined in the neighborhoods O~ and 02 respectively. The investigation of 
the functions g~~(A, (), i =  1, 2, is made along the same lines, so we 
consider only the function g ~  (A, () defined in the neighborhood O~ of the 
critical point 2~r(A). 
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Similar to the proof of Lemma 4.2, the function A~(z) has the 
following representation in O(zl(A)),  where z l ( A ) = a  ~(2~r(A)): 

c~"(z) ,/, +c~ff,(_ ) (E.2) 
A ~(z) = ((z, - z)la",,(O) ) - 

Here c "~ 11 (z), i =  1,2, are functions analytic in A, and the expression 
((z~-z)/a'.'~(O)) ]/'- means the branch of the function w ~/-~ that has positive 
values on the ray z = z~ - a",(0) �9 t, 0 < t < ~ .  In addition, 

(1) c A (zl(A)) :~0 

An analogous representation is valid for the integral 

DA(p, z ) . f ~ ( A ,  It) d/L = bC..~ ~(~,_..z) b,_~,(~ 
Iv, a A ( ~ ) - z  ((z~-z)/a"j(0))  vz+  .I , 

z) (E.3) 

where z e O ( z t ( A ) ) .  Here the functions b~ff (~, z), i =  1,2, are analytic in 
A,~,  and z ~ O ( z l ( A ) ) ,  and 

bll~(O,z)~f = ~ '~(:I(A))'J'~(A,O)., (E.4) 

Now from (E.1)-(E.4) we obtain the representation (4.24) with the condi- 
tion (4.25). The lemma is proved. 
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